kshama/llm_wrapper.py
2025-06-29 20:49:04 +06:00

22 lines
815 B
Python

from transformers import pipeline
class LlmWrapper:
def __init__(self, model_name="Qwen/Qwen3-0.6B", max_new_tokens=256):
self.model_name = model_name
self.pipe = pipeline("text-generation", model=model_name)
self.max_tokens = max_new_tokens
def summarize(self, text: str, prompt_template=None) -> str:
# Default to a lightweight summarization instruction
prompt = (
prompt_template or
f"Summarize the following content briefly:\n\n{text.strip()}\n\nSummary:"
)
messages = [{"role": "user", "content": prompt}]
try:
outputs = self.pipe(messages, max_new_tokens=self.max_tokens)
return outputs[0]["generated_text"].strip()
except Exception as e:
return f"[LLM ERROR]: {e}"