from transformers import pipeline class LlmWrapper: def __init__(self, model_name="Qwen/Qwen3-0.6B", max_new_tokens=256): self.model_name = model_name self.pipe = pipeline("text-generation", model=model_name) self.max_tokens = max_new_tokens def summarize(self, text: str, prompt_template=None) -> str: # Default to a lightweight summarization instruction prompt = ( prompt_template or f"Summarize the following content briefly:\n\n{text.strip()}\n\nSummary:" ) messages = [{"role": "user", "content": prompt}] try: outputs = self.pipe(messages, max_new_tokens=self.max_tokens) return outputs[0]["generated_text"].strip() except Exception as e: return f"[LLM ERROR]: {e}"