import time import torch from transformers import pipeline, AutoTokenizer from memory import Memory from web_search_helper import WebSearchHelper begin_time = time.time() # === šŸ”§ Initialize model + tokenizer === model_id = "meta-llama/Llama-3.2-1B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model_id, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto", pad_token_id=128001 # Prevents warning spam ) # === 🧠 Core components === memory = Memory() searcher = WebSearchHelper() # === 🧭 System behavior prompt === SYSTEM_PROMPT = """ You are ą¦•ą§ą¦·ą¦®ą¦¾ (Kshama), Abu's personal AI assistant. You are insightful, methodical, and intentional. Capabilities: - Recall useful information from persistent memory. - Decide when a web search is truly necessary. - Summarize web content when requested using clear language. Protocols: - To store new memory: ##MEM:add("...") - To request search: ##SEARCH:yes - If no search is needed: ##SEARCH:no Be precise and only initiate web search when memory is insufficient. Don't guess. Use memory and web knowledge actively. """ # === šŸ“ Summarizer using same model === def summarize_with_llama(text: str) -> str: prompt = f"Summarize the following content briefly:\n\n{text.strip()}\n\nSummary:" output = pipe(prompt, max_new_tokens=256) return output[0]["generated_text"].replace(prompt, "").strip() # === šŸ” Check if agent requests web search === def should_search(user_input: str, mem_text: str, kb_text: str) -> bool: messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": f"User asked: {user_input}"}, {"role": "user", "content": f"Memory:\n{mem_text or '[None]'}"}, {"role": "user", "content": f"Web Knowledge:\n{kb_text or '[None]'}"}, {"role": "user", "content": "Should you search the web to answer this? Reply with ##SEARCH:yes or ##SEARCH:no only on the first line."} ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) output = pipe(prompt, max_new_tokens=16, do_sample=False) reply = output[0]["generated_text"].strip().lower() print(output) return reply.splitlines()[0].strip() == "##SEARCH:yes" # === 🧠 Main agent response handler === def generate_response(user_input: str): # Step 1: Retrieve memory and knowledgebase mem_hits = memory.query(user_input, top_k=3) mem_text = "\n".join([f"- {m}" for m in mem_hits]) _, kb_hits = searcher.query_kb(user_input, top_k=3) kb_text = "\n".join([f"- {k['summary']}" for k in kb_hits]) # Step 2: Ask if search is needed if should_search(user_input, mem_text, kb_text): print("[🌐 Search Triggered]") urls = searcher.search_duckduckgo(user_input) summaries = searcher.crawl_and_summarize(urls, llm_function=summarize_with_llama) searcher.add_to_kb(summaries) _, kb_hits = searcher.query_kb(user_input) kb_text = "\n".join([f"- {k['summary']}" for k in kb_hits]) else: print("[šŸ”’ Search Skipped]") # Step 3: Generate final answer messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": user_input}, {"role": "user", "content": f"Memory:\n{mem_text or '[None]'}"}, {"role": "user", "content": f"Web Knowledge:\n{kb_text or '[None]'}"} ] full_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) start = time.time() output = pipe(full_prompt, max_new_tokens=512) elapsed = time.time() - start response = output[0]["generated_text"].replace(full_prompt, "").strip() # Step 4: Store memory if requested if "##MEM:add(" in response: try: content = response.split("##MEM:add(")[1].split(")")[0].strip('"\'') memory.add(content) print("[āœ… Memory Added]") except Exception as e: print(f"[āš ļø Could not parse memory]: {e}") return response, elapsed # === šŸ‘‚ Main loop === if __name__ == "__main__": print(f"šŸš€ Kshama ready in {time.time() - begin_time:.2f}s") print("šŸ‘‹ Hello, Abu. Type 'exit' to quit.") while True: user_input = input("\nšŸ§‘ You: ") if user_input.strip().lower() in ["exit", "quit"]: print("šŸ‘‹ Farewell.") break response, delay = generate_response(user_input) print(f"\nšŸ¤– ą¦•ą§ą¦·ą¦®ą¦¾ [{delay:.2f}s]: {response}")