import time import torch from transformers import pipeline, AutoTokenizer from memory import Memory from web_search_helper import WebSearchHelper begin_time = time.time() # === šŸ”§ Load model + tokenizer === model_id = "meta-llama/Llama-3.2-1B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model_id, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto", pad_token_id=128001 ) # === šŸ”Œ Core modules === memory = Memory() searcher = WebSearchHelper() # === 🧭 System behavior instruction === SYSTEM_PROMPT = """ You are personal AI assistant. You're wise, efficient, and intentional. You can: - Recall long-term memory and use it to answer. - Summarize long documents clearly. - Perform web search *only if you believe it's necessary*, and clearly state that with ##SEARCH:yes. You also refine web search queries using what you understand of the user's intent. Always follow this format: - ##MEM:add("...") to add memories - ##SEARCH:yes or ##SEARCH:no on its own line to trigger or skip web search - After search: generate a clear answer, using memory and the retrieved summaries """ # === šŸ“˜ Summarization using main model === def summarize_with_llama(text: str) -> str: prompt = f"Summarize the following:\n\n{text.strip()}\n\nSummary:" output = pipe(prompt, max_new_tokens=256) return output[0]["generated_text"].replace(prompt, "").strip() # === šŸ” Ask if search is needed === def ask_should_search(user_input, mem_text, kb_text): messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": f"User asked: {user_input}"}, {"role": "user", "content": f"Memory:\n{mem_text or '[None]'}"}, {"role": "user", "content": f"Web Knowledge:\n{kb_text or '[None]'}"}, {"role": "user", "content": "Do you need to search the web to answer this? Reply ##SEARCH:yes or ##SEARCH:no on the first line only."} ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) output = pipe(prompt, max_new_tokens=16) reply = output[0]["generated_text"].strip().lower() return reply.splitlines()[0].strip().__contains__("##SEARCH:yes") # === āœļø Compose better search query === def compose_search_query(user_input, mem_text): messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": f"User asked: {user_input}"}, {"role": "user", "content": f"Relevant memory:\n{mem_text or '[None]'}"}, {"role": "user", "content": "Rewrite a concise web search query to find useful info. Output only the query string, nothing else."} ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) output = pipe(prompt, max_new_tokens=32) return output[0]["generated_text"].strip().splitlines()[0] # === 🧠 Main reasoning function === def generate_response(user_input: str): # Step 1: Recall memory and web KB mem_hits = memory.query(user_input, top_k=3) mem_text = "\n".join([f"- {x}" for x in mem_hits]) _, kb_hits = searcher.query_kb(user_input) kb_text = "\n".join([f"- {k['summary']}" for k in kb_hits]) # Step 2: Ask model if search is truly required if ask_should_search(user_input, mem_text, kb_text): print("[🌐 Search Triggered]") search_query = compose_search_query(user_input, mem_text) print(f"[šŸ”Ž Composed Query] {search_query}") urls = searcher.search_duckduckgo(search_query) summaries = searcher.crawl_and_summarize(urls, llm_function=summarize_with_llama) searcher.add_to_kb(summaries) _, kb_hits = searcher.query_kb(user_input) kb_text = "\n".join([f"- {k['summary']}" for k in kb_hits]) else: print("[šŸ”’ Search Skipped]") # Step 3: Final answer generation messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": user_input}, {"role": "user", "content": f"Memory:\n{mem_text or '[None]'}"}, {"role": "user", "content": f"Web Knowledge:\n{kb_text or '[None]'}"} ] full_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) start = time.time() output = pipe(full_prompt, max_new_tokens=512) elapsed = time.time() - start response = output[0]["generated_text"].replace(full_prompt, "").strip() if "##MEM:add(" in response: try: content = response.split("##MEM:add(")[1].split(")")[0].strip('"\'') memory.add(content) print("[āœ… Memory Added]") except Exception as e: print(f"[āš ļø Failed to add memory]: {e}") return response, elapsed # === šŸ’¬ REPL Loop === if __name__ == "__main__": print(f"šŸš€ Kshama ready in {time.time() - begin_time:.2f}s") print("šŸ‘‹ Hello, Abu. Type 'exit' to quit.") while True: user_input = input("\nšŸ§‘ You: ") if user_input.strip().lower() in ["exit", "quit"]: print("šŸ‘‹ Goodbye.") break response, delay = generate_response(user_input) print(f"\nšŸ¤– ą¦•ą§ą¦·ą¦®ą¦¾ [{delay:.2f}s]: {response}")